B022411(014)

B. Tech. (Fourth Semester) Examination, April-May 2021

(AICTE Scheme)

(CSE Engg. Branch)

DISCRETE MATHEMATICS

Time Allowed: Three hours

Maximum Marks: 100

Minimum Marks: 35

Note: Part (a) of each question is compulsory and carries 4 marks each. All questions are required to be answered, selecting any two from (b), (c) and (d) and carries 8 marks each.

1. (a) Construct converse, inverse and contrapositive of the direct statement:

"If
$$4x-2=10$$
 then $x=3$."

(b) Test the validity of the argument:

"If 8 is even then 2 does not divide 9. Either 7 is not prime or 2 divides 9. But 7 is prime therefore 8 is odd."

- (c) State and prove De-Morgan's law in a Boolean algebra $(B, +, \cdot, ')$.
- (d) Change the following boolean function to disjunctive normal form and conjuctive normal form:

$$f(x,y,z) = (x+y+z)(xy+x'z)'$$

2. (a) Let $A = \{1, 2, 4\}$, $B = \{2, 5, 7\}$ and $C = \{1, 3, 7\}$, then show that

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(b) If I is the set of integers and the relation $xRy \Leftrightarrow x-y$ is an even integer'.

then prove that R is an equivalence relation, where $x, y \in I$.

(c) Show that the inclusion relation \subseteq is a partial

ordering on the power set P(s) and draw the Hasse diagram for the partial ordering $\{(A,B) | A \subseteq B\}$.

(d) If $f: X \to Y$ be a one-one and auto mapping then prove that

$$f \circ f^{-1} = I_{v} \text{ and } f^{-1} \circ f = I_{x}$$

where I_x and I_y are identity mappings of X and Y respectively.

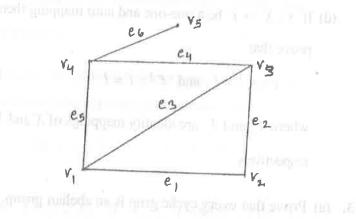
- 3. (a) Prove that every cyclic grup is an abelian group.
 - (b) Let Q_+ be the set of all positive rational numbers and * is a binary operation on Q_+ defined as

$$a*b = \frac{ab}{3}, \ \forall \ a,b \in Q_+$$

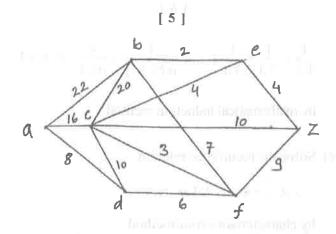
show that $(Q_+, *)$ is a group.

(c) State and prove lagrange's theorem.

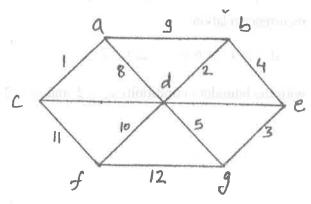
- (d) Prove that every field is an integral domain.
- **4.** (a) Define incidence matrix and find the incidence matrix of the following graph:



- (b) (i) Prove that the sum of the degrees of odd vertices in a graph is always an even number.
 - (ii) Prove that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.
- (c) Find the shortest path between a and z for the graph given below, where the numbers associated with the edge are the distances between vertices:



(d) Find a minimal spanning tree of the graph:



- 5. (a) State generalized pigeonhole principle. Show that if seven colours are used to paint 50 cars, atleast eight cars will have the same colour.
 - (b) Show that

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \forall n \ge 1$$

by mathematical induction method.

(c) Solve the recurrence relation

$$a_{r+2} - 4 \ a_{r+1} + 4 \ a_r = r^2$$

by characteristics root method.

(d) Solve by the method of generating functions, the recurrence relation

$$a_r - 5 \ a_{r-1} + 6 \ a_{r-2} = 2, \ r \ge 2$$

with the boundary conditions $a_0 = 2$ and $a_1 = 2$.